Interface Design			
	Organiser	Institution	Contact
	Lars P.H. Jeurgens	Empa (SUI) Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 8600 Dübendorf Switzerland	lars.jeurgens@empa.ch
	George Kaptay	Bay Zoltán Nonprofit Ltd and University of Miskolc Hungary	kaptay@hotmail.com

Summary

C2.II

Nano-structured and ultra-fine grained materials with their characteristically high interface density often exhibit chemical or physical properties that differ significantly from their corresponding bulk materials: e.g. a much higher yield strength, a strikingly lower or higher melting point, increased resistance to wear and corrosion and/or specific electrical, magnetic and optical properties.

This symposium will address current scientific and technological advances in the interfacial design of functional nano-structured materials for, in particular, joining technologies. Important topics to be covered by the symposium include:

- Tailoring of functional properties in nano-structured materials by smart microstructural and interfacial design.
- Experimental investigations and model predictions of size-effects in nanostructured materials (e.g. premelting, superheating, solid-state amorphisation, interfacial compound formation, metal-induced crystallization).
- Experimental investigations and model predictions of (inter-)diffusion and microstructural evolutions at solid-solid and solid-liquid interfaces between metals, semiconductors, alloys and ceramics during processing (e.g. brazing, soldering, diffusion bonding) and operation (e.g. thermal cycling, mechanical loading, chemical exposure).